

Mozilla
Localization

Tools

• Basic tools: Hg, SVN, Bugzilla, MXR

• Infrastructure tools: l10n dashboard,
compare-locales, l10n-merge

• L10n tools: Langpacker, Silme, Koala,
Verbatim, Narro, Pootle

Challenges with Mozilla l10n

• Limitations of the file types

• <!ENTITY> XML tags

• What about plural forms?

• Declensions?

• Gender?

Mozilla L10n file types
properties
offlineApps.manageUsage=Show settings

dtd
<!ENTITY netError.search.button "Szukaj">

gettext
msgid "YaST installation source"
msgstr "Źródło instalacji YaST"

What does Mozilla
do for its

localization
community?

Basic tools

• Hg

• SVN

• Bugzilla

• MXR

Infrastructure tools

• l10n-dashboard

• compare-locales

• l10n-merge

L10n tools

• Langpacker

• Silme

• Koala

• Verbatim

• Narro

• Pootle

What makes a good tool?

• Missing layer between apps and data

• People tend to focus on front-end l10n tools

• Tools are often strongly dependent of one data
format -- DTD, .po, gettext, XLIFF, etc.

• Developers continually reinvent the wheel

Langpacker

Koala

Verbatim, Narro,
Pootle

Silme

What is Silme?

Silme (seel-may) is a letter in Tengwar alphabet

Silme is built around several abstract concepts that allow the library to support any possible
localization format, from DTD, GetText or XLIFF, to MySQL and SQLite, from JAR and normal
directory to SVN, CVS or any other Revision Control System.

Over the next few slides, I will explain the basic concepts that will allow you to understand the
architecture of the library. Of course it is just an introduction, but you'll see how we have created
extensible modules for your data. Here we will focus on the simplest cases.

Goals
• Generic l10n operations simplified

• format independency

• source independency

• platform indepencency

• make localization over time easier

The goal of Silme is to make localization easier. That does not
mean Silme is easy to understand. :) But, generally, we hope to
make generic l10n operations more simple. We do this by making
formats, sources and platforms independent of this tool.
Essentially, the goal is to allow everyone to play. And, we hope it
will make localization much easier over time.

Target

• L10n tools developers

• Localizers with beginner
programming knowledge

• Application developers

• Build system administrators

With Silme, we hope to target l10n tools developers who might use
this as a middle layer between their format types and their code
repository. We also want to attract localizers with beginning (or
more advanced) programming knowledge to use this to construct
new tools. We would love application developers to participate to
build really dynamic, next generation tools. And finally, we’d like
build system administrators to use in their release engineering tool
inventory.

Features
• Generic

• Strong diff support

• Extensible input/output
(file, zip, sql, cvs, hg,
svn...)

• Extensible format
support (dtd, xliff, prop.,
po, l20n...)

• Modular (silme.core,
silme.diff, silme.formats,
silme.io)

• Multilocale

strong diff support allows you to easily show changes that have
been made from one version of the localization to the next

API - silme.core

• silme.core.Entity

• silme.core.EntityList

• silme.core.L10nObject

• silme.core.L10nPackage

We have four main modules with Silme. Entity, EntityList, L10n
Object, L10n Package. I’ll take you through each of these now with
some examples.

API - silme.core.Entity

id value
offlineApps.manageUsage Show settings

netError.search.button Źródło instalacji YaST

YaST installation source Szukaj

build.button install

properties
offlineApps.manageUsage=Show settings

dtd
<!ENTITY netError.search.button "Szukaj">

gettext
msgid "YaST installation source"
msgstr "Źródło instalacji YaST"

lol
<build.button: "Install">

id value
offlineApps.manageUsage Show settings

netError.search.button

YaST installation source

build.button

entity ->

Silme's most core and atom unit is "Entity". As some of you may know, Entity is a class that stores
single pair of ID<-->VALUE in an abstract model. It is a representation of DTD's

<!ENTITY ID "VALUE">
Gettext's msgid "ID"\nmsgstr "VALUE"
MySQL's ID column and VALUE column in L10n table
etc., etc...

It's very important to understand that you can serialize any localization list to use Entity as long as
you can generate a unique ID across one list and assign it a value.

API - silme.core.EntityList
entityListentityList

id value

itemHistory.label Browsing History

itemHistory.accesskey B

itemPasswords.label Saved Passwords

itemCookies.label Cookies

itemOfflineApps.label Offline Website Data

entityList = EntityList()

entityList.id = “sanitize.dtd”

entity = Entity(‘itemHistory.label’)

entity.setValue(‘Browsing History’)

entityList.addEntity(entity)

Group of Entity objects is stored as an EntityList object. EntityList is a list (in fact, a dict structure
in Python) that stores list of Entities and nothing more. The easiest way to imagine it is a
localization SQL table containing two columns - ID and VALUE. The single row is Entity, the
whole table is EntityList.

API - silme.core.L10nObject
<!ENTITY itemCookies.label "Cookies">

<!--
temporary disabled

<!ENTITY itemDisabled “Disabled”>

-->

<!ENTITY itemCookies.accesskey "C">

<!ENTITY itemCache.label "Cache">
<!ENTITY itemCache.accesskey "a">

<!ENTITY itemOfflineApps.label "Offline Website Data">

<!ENTITY itemOfflineApps.accesskey "O">

<!ENTITY itemDownloads.label "Download History">

<!ENTITY itemDownloads.accesskey "D">
<!ENTITY itemSessions.label "Authenticated Sessions">

<!ENTITY itemSessions.accesskey "S">

<!ENTITY window.width "30em">

entity
\n\n

comment
\n

entity
\n

entity
\n

\ntemporary
disabled\n

entity

\n

* API - silme.core.Object

Above that, in some abstract sense, there is L10nObject class. L10nObject extends EntityList and is a representation of any L10n file. So besides a list of Entity objects, it also contains “comment objects” and “normal strings” between them. It's easiest to imagine it as a full representation of simple DTD file:

<!ENTITY myapp.title "MyApp Title">
<!--
Not used anymore
<!ENTITY title.old "Some Title">
-->
<!ENTITY notify.msg "Please, click OK to continue">
<!ENTITY notify.btn "OK">

will look like this:

String('\n')
Entity(id:'myapp.title',value:'MyApp Title')
String('\n')
Comment(
 String('\nNot used anymore\n')
 Entity(id:'title.old', value:'Some Title')
)
String('\n')
Entity(id:'notify.msg',value:'Please, click OK to continue')
String('\n')
Entity(id:'notify.btn',value:'OK')
String('\n\n')

L10nObject is more like a file, EntityList like an SQL table. You can get EntityList out of L10nObject or you can get EntityList out of a file directly if you don't want to use the other elements of the structure. This can be handy for those who only want to use the Entities. Maybe those who are really familiar with what is going on.

The most important feature of this is that L10nObject stores whole content of the file and should always represent the full file, which means that dumping this structure back to the same format will produce identical file as a source one. In the middle you can operate, move, remove, add strings, comments and entities.

Beyond L10n Object, we have just “Object”:

Object is used to store data about files that we cannot parse. If, for example, your application will be prepared to parse DTD/PO/Properties and will get HTML file or JPEG it will store it as an Object. Object has an ID and source properties. Not very useful but will allow us to build a full structure above it:

API - silme.core.L10nPackage

l10nPackage = {

 id: ‘mozapps’,
 objects: {},

 packages: {

 ‘downloads’: ...

 ‘help’:{

 id: ‘help’,
 packages: {},

 objects:{

 ‘help.dtd’: L10nObject,

 ‘help.properties’: L10nObject}

 }
 ‘profile’: ...

 }

L10nPackage is a representation of list of L10nObjects/Object/EntityLists and potentially other
L10nPackages. In the file system world, the nearest similar thing is a directory. Directory can store
DTD files, JPEG files, and other directories. Another similar structure is MySQL database which
stores tables (EntityLists in our case).

Summary

That's all. Currently the scope of the library is to present all potential localization structures using
those classes and build an API to operate on them easily. Does that seem clear. I’ll take one or two
questions now.

API - silme.diff

entityDiff = entity.diff(entity2)

entity2 = entity.applyDiff(entityDiff)

entityListDiff = entityList.diff(entityList2)

entityListDiff2 = entityList.applyDiff
(entityList2)

Each of the objects - Entity, EntityList, L10nObject, L10nPackage -
has a mirror class in the silme.diff module

Each and every of the objects - Entity, EntityList, L10nObject, Object, L10nPackage has it's mirror class in the Diff land.

As a result we have EntityDiff, EntityListDiff, L10nObjectDiff, ObjectDiff, L10nPackageDiff. Diff module allows you to store a difference between two objects of the same
type and apply it later.

It's like a diff tool in Linux, but it is aware of the syntax of the files/structures and stores the diff in an appropriate way.

For example if a diff between two EntityLists is a value of one entity, it'll store it as EntityDiff with ID of that entity and (oldvalue,newvalue) tuple.

In case of an API, it'll usually go down to:

l10npackagediff = l10npackage1.diff(l10nPackage2)

l10npackage3.apply_diff(l10npackagediff)

l10npackage4.apply_diff(l10npackagediff)

but of course you will be able to manually operate on all structures by adding/removing/modifying the content of each object.

API - silme.diff: 3-way merge

en-us
1.0

en-US
3.1

ab_CD
3.1

ab_CD
1.0

• Everything you need to read or know
 https://wiki.mozilla.org/L20n

• Demo

Mozilla L10n 2.0 ... L20n

L20n is the codename for a localization architecture taking existing approaches one step further. The name stands for l10n 2. The
architecture is laid out with Mozilla applications in mind, but should be applicable to other areas as well. Implement significant
changes in our l10n architecture, and this is one attempt to do that.

Mozilla
Community Sites

Goal: Integrated communities

Localization Support Marketing PR QA Fun

Saturday, February 7th 2009

Coordinating vertical groups across country teams

grid communities serve both goals by interacting on all levels, keeping
local identity

mozilla communities sites

Saturday, February 7th 2009

mozilla communities sites

• Main page

• News

• Wiki - Mediawiki

• Forum - punBB, phpBB

• Blogs - Wordpress

• Planet

Saturday, February 7th 2009

mozilla communities widgets

Saturday, February 7th 2009

Mozilla Community Logo

• Layer between communities and
our official branding

• Unifying element

• Liberal licensing - do what you
want

Saturday, February 7th 2009

Mozilla Community Theme

• Very clean code base, HTML 5 ready

core.css

layout.css

rtl.css

custom.css

skeleton.css header-bar.css

header.css

content.css

footer.css

color.css

<html>

 <div class=”header”>

 <div class=”middle”>

 <div class=”aside” id=”left-bar” />

 <div class=”section” id=”content” />

 <div class=”aside” id=”right-bar” />

 </div>

 <div class=”footer”>

</html>

• OpenID, Single sign on

• Best practices from communities

Saturday, February 7th 2009

Thursday, January 1st 1970

Benefits of the MCS

• Small community website

• Out-of-the-box experience

• Easy maintenance

• Easy to extend

Thursday, January 1st 1970

MCS uses Drupal

• powerful community system

• blogs, news, forums, calendar, wiki, etc.

• able to handle major communities, tons of
extensions

MCS future

• Launch MCS in communities, including India

• MozCampDelhi

• Get all applications ready

• Common web admin panel

• Keep working on implementation (JS, CSS,
HTML etc.)

• Cherry-pick best extensions and include them

Saturday, February 7th 2009

future

• T-shirts

• MCS Slide Templates

• Style Guide, extend the style

• Community aggregators

• Spin-offs?

Saturday, February 7th 2009

• Contribute
http://contribute.mozilla.org

• Mozilla Community Sites
http://mcs.labs.braniecki.net/theme/html/index.html

• Silme Wiki
https://wiki.mozilla.org/Silme

Get involved

That's all for now. This article explained the basic concepts behind the library and I hope you'll find
the library useful enough to experiment with writing apps on top of it and/or working with the
library itself.

Questions?
sethb@mozilla.com
http://blog.mozilla.com/seth

