
MozMill Functional Test Automation Extension

 June 4, 2008

Purpose

To provide a tool that allows the community to efficiently build and execute functional
tests against Mozilla applications in order to maximize QA efficiency and improve
product release cycles.

Test Recording

Using event listeners attached to all application windows we can collect and analyze the
event triggered and itʼs target. Using DOM id, name, JavaScript, XPath and RegEx we
can build a reasonable way to access this element again in the future to “play back” the
event that was fired. If the user is blocking the capturing phase with
event.stopPropagation as well as event.preventDefault the test editing/writing GUI can
be used to build this “action” manually. Since we are working in trusted mode the
possibility of detecting that this event was fired even though it was not allowed to
propagate to our listeners may now be a possibility as well.

Test Editing/Writing

Recording a user session in the GUI is very useful, but there are things that the recorder
canʼt pick up at this time including timing, page loading issues and thorough assertions.
This GUI will allow the user to manually, but still quickly build actions to execute against
the application.

- The first tool is a JavaScript Shell with built in hooks for interacting with the controller
to simulate and navigate the the DOM from the command line.

- The second is a DOM explorer which features quick integrated action building based
on point and click against visible elements.

- The third is an Assertion Tool allowing point and click on the fly introspection of DOM
Elements in order to generate assertions based on their state and contents. This will
allow test builders to insert test actions that can verify nearly every aspect of the
applications state at a certain point in time. This is a very important functional test
feature that has shown very effective in catching regressions in the Open Source
Chandler Calender Server AJAX UI.

Test Execution

Using the JavaScript Test Execution Framework originally written for the Windmill
Testing Framework we can leverage the flexibility of functional tests written purely in
JavaScript. This uses the Element Resolution Component to access the provided DOM

element and the Controller Component to replicate the events specified or recorded by
the user.

This gives the test writer full control of their test and choice in whether they would like to
write a test method as a JavaScript function in order to execute more advanced logic
that canʼt be accomplished with the provided Controller API.

The JavaScript Test Framework is tied to the Results and Reporting components
allowing MozMill to communicate itʼs testing state to many possible external sources for
notification and analysis.

Compatibility

One of the concerns of functional testing on the web is the ability to compare functional
cases against other browsers. Since the Windmill Testing Framework is cross browser
and cross platform and uses similar JavaScript Test Framework, Controller and Element
Resolution the MozMill JavaScript tests that donʼt involve Chrome components and
target the window.document can be executed using Windmill against the other browsers
as well.

