A Qualitative Study of Mozilla’s Process Management
Practices

Olga Baysal and Reid Holmes
David R. Cheriton School of Computer Science
University of Waterloo, Canada
{obaysal, rtholmes}Qcs.uwaterloo.ca

May 16, 2012

1 Informal Overview

The Mozilla Anthropology! project was started in late 2011 to examine how various stake-
holders make use of Bugzilla in practice and to gain a sense of how Bugzilla could be
improved in the future to better support the Mozilla community.

During this process, Martin Best interviewed 20 community members; we have split
these 20 interviews into over 1,200 individual statements and performed an open card
sort to try to gain insight into high-level themes about Bugzilla to identify strengths,
weaknesses, and ideas for future enhancement of the platform. During this process, 4
high-level categories emerged from the data (along with 91 sub-themes). These were:

e Situational awareness (19 participants, 208 quotes, 14 sub-themes)
e Supporting tasks (20 participants, 700 quotes, 53 sub-themes)
e Expressiveness (20 participants, 188 quotes, 12 sub-themes)

e The rest (20 participants, 166 quotes, 12 sub-themes)

While some of the sub-themes were not surprising (e.g., Supporting Tasks::Reporting::
Submission process), the topics that emerged around situational awareness really stood
out. While Mozilla dashboards are often thought of as quantitative tools (e.g., bug
open/close charts, performance changes, etc.), a real desire for personalized list-based dash-
boards became apparent. For example, several users wanted the ability to privately mark
bugs to watch (Situational Awareness::Private Dashboard::Watch List (10 participants, 18
quotes)), while others wanted to be able to gain insight into a developer’s role within the

"https://wiki.mozilla.org/Bugzilla_Anthropology



project (are they active, are they module owners, do they have review rights, etc.) (Situa-
tional Awareness::Public Dashboards::Developer Profiles (12 participants, 31 quotes)).

Situational awareness also crosscut some of the sub-themes from other themes. For
example, Supporting Tasks::Code Review::Recommending Reviewers (6 participants, 10
quotes), where developers really wanted the ability to determine the work load of a reviewer
before requesting a review (this could be captured in a public dashboard that showed the
reviewer’s current queue).

Rather than chart-based views, most of the Situational Awareness shortcomings in
Bugzilla could be implemented as lists that pivot or enumerate various pieces of metadata
already presented in the system. By treating people as first-class entities within Bugzilla
(bugs are currently first-class, people are just metadata on bugs), developers could modify
a personal dashboard page that could have public and private information and serve as a
heads up display showing them their own specific view of the Bugzilla repository.

We are continuing to analyze the categories that have emerged from the card sort to
identify other themes that could suggest improvements to Bugzilla to better support the
Mozilla community. Any insight into the categories and themes we have identified would
be greatly appreciated!

2 Open Coding Approach

We have performed a qualitative study on the data collected by Martin Best? who con-
ducted interviews with 20 Mozilla developers on their engagement and experience with
Bugzilla bug tracking system.

We applied an open coding technique to classify 1,213 individual comments into nat-
urally emerging themes. We identified 15 themes and 91 sub-themes, containing between
two to 41 comments. Later, the 15 themes were grouped into 4 concept categories. These
concept categories consist of two to six themes. Each concept category relates to a different
aspect of how Mozilla developers interact with Bugzilla to report and resolve bugs and to
manage the collaborative process.

We provide an overview of the concept categories, as well as their themes and sub-
themes. For each theme and sub-theme we provided the number of individual participants
commenting on a certain issue and the total number of quotes given. For each sub-theme
we developed a synthetic quote that provides a general thought on the topic. Synthetic
quotes are generated by combining participants’ comments into a single statement. Due
to space constraints, synthetic quotes are not reported in this document.

2http://blog.mozilla.org/mbest/



3 Concept Categories

The four concept categories that have emerged during the card sort do not necessarily have
direct correspondence to the tasks developers perform daily. Rather, they are a combination
of actions and mental activities developers perform when considering and executing these
tasks.

Situational Awareness is a form of gathering information on what’s happening on a
project. Participants often find themselves trying to identify the status of a bug - what is
is waiting on and who, who is working on what bugs, what are the workloads of others,
who is the best person to review the patch, as well as trying to track their own tasks - how
many bugs do I need to triage/fix/review/follow up.

Supporting Tasks addresses issues related to specific tasks such as code review, triage,
reporting, testing, release management, etc.

FExpressiveness provides means to communicate the process with others. Whiteboard
and keyword tags are primary ways for tracking status, seeking approval, increasing aware-
ness and interest, etc.

The Rest includes topics related to interacting with version control systems, other
general issues about Bugzilla such as performance, culture, process, etc.

Table 1 describes themes and sub-themes that each of the 4 categories is comprised of.

Table 1: The overview of the concept categories.

Category/theme/sub-theme # Participants # Quotes
Situational Awareness 19 208
e Dashboards 18 99
— Public dashboards 16 60
Developer profiles 12 31
Workload transparency 12 22
Communicating interest 8 12
— Private dashboards 15 39
Tracking activity 12 21
Watch list 10 18
e Collaborative Filtering . 4 s
— Highlighting important comments 4 8
~ eStatus 18 56
— What is the current status? 8 24
— Next action 11 20
— Bug hand-off 6 12
 eEmall 17T 45
— Overwhelming volume 8 12
— Email is important 11 16



Table 1 — Continued

Category/theme/sub-theme # Participants # Quotes
— Email is not important 2 2
— Filtering 6 9
— Formatting 4 6
Supporting Tasks 20 700
e Code Review 20 130
— Recommending reviewers 6 10
— Patches 10 27
— Importance of review timeliness 8 12
— States 12 32
— Process and community 8 11
— RiskReward 5 8
— Misc 17 30
e Triage & Sorting 20 259
— Sorting / filtering 15 35
— Bug assignment 12 25
Who gets the bug? 7 10
Self Assignment 6 10
Unassigned 4 5
— Components/products 17 41
— Component owners 3 4
— Last touched 4 7
— Is this bug actionable? 10 16
— Volume of bugs to triage 4 5
— Duplicates 4 7
— Bugs in General 6 9
— Bug kill days 3 4
— Triage & community engagement ) 7
— Midair collision 2 2
— Triage meetings ) )
— Triage of other components 2 4
— Triage process 10 18
— Comments 4 4
— Misc 15 39
e Reporting 20 145
— Submission is harder / more confusing than needed 17 33
— Improving reporting 10 14
— Defects in the reporting experience 4 9
— Metadata 10 23
— The role of the description and summary fields 9 14



Table 1 — Continued

Category/theme/sub-theme # Participants # Quotes
— Possible enhancements to improve reporting 12 15
— External tools 2 3
— Intimidating for new users 7 8
— Misc 26
- eSearch 14 53
— Quick search 4 7
— Advanced search 5 5
— Saved/shared 5 8
— Hard/confusing 7 10
— Date range 3 3
— Performance 3 )
— Product 2 2
— Dups 3 5
— Misc 6 8
e Testing & Regression 14 37
— Regression ) 9
— Testing and its reliability 8 15
— QA and Validity 6 9
— Fuzzing 2 4
~eTasks 13 %6
— Role-specific views 4 7
— Release management 10 27
— Where a bug lands? 10 22
— Statistics 8 12
— Workflow 6 8
Expressiveness 19 188
e Metadata 20 132
— Tracking flags 14 38
— Whiteboard 17 36
— Keywords 14 22
— Meta bugs 3 6
— Metadata (general) 8 12
— Tagging (general) 3 4
— Status flags 9 14
e Severity/Prioritization 19 56
— Unclear definition of priority/severity 6 8
— Priority 13 14
— Severity 11 16
— Prioritization 8 13



Table 1 — Continued

Category/theme/sub-theme # Participants # Quotes
— Misc ) )
The Rest 20 117
e Version Control 8 43
— Reviewing via Github 3 12
— Checkins 6 13
— Branching 4 6
— Merging 2 4
— Integration of Bugzilla with Hg 4 8
e Bugzilla Issues 16 64
- Ul 8 11
— Advanced scripts and tweaks 7 11
— Process 3 3
— Feature pages 8 11
— Performance 2 3
— Culture 4 6
— Misc 12 19
e Useless 9 ] 10

4 About the Authors

Olga Baysal is a PhD student at the School of Computer Science, University of Waterloo,
working under the supervision of Dr. Michael Godfrey. Her research interests include
mining software repositories, software evolution, applying Al and IR techniques into the
field of software engineering. She obtained her MMath degree at the University of Waterloo
supervised by Dr. Andrew Malton.

Reid Holmes is an Assistant Professor in the Cheriton School of Computer Science
at the University of Waterloo. His interests include understanding the cognitive aspects of
software engineering, software reuse, example recommendation systems, and longitudinal
dynamic analyses. He has published articles in top-tier publications including the Interna-
tional Conference on Software Engineering (ICSE), Foundations of Software Engineering
(FSE), Transactions on Software Engineering (TSE), and Transactions on Software Engi-
neering and Methodology (TOSEM). He has won distinguished paper awards at ICSE and
FSE. He did a postdoc at the University of Washington advised by David Notkin, received
his Ph.D. at the University of Calgary advised by Robert J. Walker, and received his M.Sc.
at the University of British Columbia advised by Gail C. Murphy.



